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Abstract

In this paper, we fit Cox proportional hazards models to a subset of data from the Hypobaric Decompression
Sickness Databank (Conkin et al., 1992). The data bank contains records, accumulated from literature sources

and experiments, on the time to decompression sickness (DCS) and venous gas emboli for over 130,000 person-
exposures to high altitude in chamber tests. The subset we used contains 1,321 records, with 87% censoring, and has

the most recent experimental tests on DCS that have been made available from Johnson Space Center. We built on
previous analyses of this data set by considering more expanded models as well as more detailed model assessments
specific to the Cox model. We found that a Cox model stratified on the quartiles of the final ambient pressure at

altitude, which is one of the covariates, described the data better than did previously considered models (e.g.,

English 2000, Chhikara et al., 1998). Our model also included final ambient pressure at altitude as a nonlinear
continuous predictor, as well as the computed tissue partial pressure of nitrogen at altitude, and whether or not

exercise was done at altitude. We conducted various assessments of our model, many of which were recently
developed in the statistical literature, and we concluded where the model needs improvement. We considered the
addition of frailties to the stratified Cox model, but found that no significant gain is attained over a model that does

not include frailties. Finally, we validated some of the models we fit. The results in this paper serve as a useful
addition to the growing literature on statistical analysis of DCS in hypobaric environments.

I. Introduction

When humans travel to a hypobaric environment, gas that normally dissolves in tissues can escape from solution

to form gas spaces or bubbles that can displace or damage tissues (Conkin, 2001 ). The displacement of tissues by
trapped gas spaces can cause a wide variety of symptoms, ranging from the mild joint pain in the elbows, knees, and
shoulders that is commonly called the 'bends' (Type I decompression sickness (DCS)) to more serious symptoms

that result from bubbles lodging near major organs such as the brain (Type II DCS). The presence of these symp-
toms is collectively referred to as DCS. In general, the longer the exposure to pressure reduction, the greater the

risk of DCS, especially of Type II DCS.

Although the space shuttle or the airlock on the International Space Station (ISS) is pressurized to sea-level
pressure (14.7 pounds per square inch absolute (psia)), crew members are exposed to a greatly reduced absolute

pressure during extravehicular activity (EVA) because their spacesuits are pressurized to much lower than sea level
(about 4.3 psia) (Foster et al., 1998). So astronauts risk Type II DCS each time they perform EVAs. The risk can be
decreased or prevented through sufficient denitrogenation prior to EVA. Denitrogenation procedures typically in-

volve prebreathing pure oxygen or oxygen-enriched mixtures. One of the goals of this paper is to build a model
that quantifies the risk of DCS in hypobaric situations similar to those experienced by astronauts on EVAs.

Several researchers have fit parametric survival models to right-censored DCS data from altitude exposures.
Kumar and Powell ( i 994) modeled log time to onset of DCS as a parametric function of explanatory variables
such as tissue ratio (a measure of nitrogen decompression stress) and the presence of circulating microbubbles in

venous blood. Kannan and Raychaudhuri (1998) and Conkin et al. (1996) fit log-logistic models to time to onset
of DCS symptoms. Together these studies included covariates such as tissue ratio, type of exercise at altitude, final
pressure at altitude, and prebreathing time. In addition, Kannan and Raychauduri (1998) fit a semi-parametric Cox

(1972) proportional hazards model and concluded its predictions were very close to those of the log-logistic model.
More recently, Conkin (2001) took an evidence-based approach to estimate a nonlinear parametric hazard function,
and then used the integrated hazard as a component of the probability in a Bernoulli likelihood predicting whether or

not Type ll DCS occurred in a series of published studies. Later, Thompson and Chhikara (2001) fit a random

effects logistic model to the same data.

The objective of this study is to model onset time to DCS and to assess the effect of certain covariates. To do this,
we analyzed a subset of the Hypobaric Decompression Sickness Databank (HDSD) (Conkin et al., 1992) that was
accumulated from literature sources and experiments at Johnson Space Center (JSC). The HDSD contains records

from over ! 30,000 person-exposures to high altitude in chamber tests. The subset we used contains 1,32 ! records
from the most recent experimental tests on DCS made available from JSC to develop safe decompression procedures



forEVA.ThegeneralmodelweusedforthisdatasetistheCox(1972) model because of its attractive semi-
parametric nature and ease of fitting.

This subset of the HDSD has been analyzed previously. Chhikara et al. (1998) initially examined accelerated
failure time models for these data (lognormal and log-logistic) but preferred the Cox proportional hazards model

because it does not assume a parametric distribution for the failure time. These authors included as covariates the
computed tis sue partial pressure of nitrogen at altitude, ambient pressure at altitude, and whether exercise was done
at altitude. English (2000) also analyzed these data and included an interaction term and fit models that was strati-

fied on whether or not exercise was done at altitude. The set of models we considered differs from previous models
in that we included a different set ofcovariates and considered stratification on other variables. Furthermore, we

included an extensive set of diagnostics to evaluate model fits. From this we show the models considered previ-

ously for this data set are inadequate because they do not account for all of the variability in the data.

In Section 2, we give a brief introduction to Cox's proportional hazards model and its extension to stratification.
In Section 3, we describe the data and the covariates we included in the models. We examine estimated survival

functions and hazard functions by covariates. In Section 4, we discuss the assessment of the proportional hazards
assumption in the Cox model. In Section 5, we examine fitting stratified Cox models to the DCS data and conduct

residual analysis. In Section 6, we describe one of the final chosen models for these data. In Section 7, we discuss
fitting frailty models to the data. Finally in Section 8, we validate some of the models we have considered.

2. Cox Proportional Hazards Model

In survival models, the hazard function for a given individual describes the instantaneous risk of experiencing an
event of interest within an infinitesimal interval of time, given that the individual has not yet experienced that event.

Cox (1972) proposed a semi -parametric model for the hazard function that allows the addition of explanatory varia-
bles, or covariates, but keeps the baseline hazard as an arbitrary, unspecified, nonnegative functional of time. The
Cox hazard function for fixed-time covariates, x, is

A(t; x) = 2_(t)exp(x'fl) (2.1)

Due to the construction of (2.1), the baseline hazard ,_,0(t) is defined as the hazard function for that individual

with zero on all covariates. Because the baseline hazard is not assumed to be of a parametric form, Cox's model is
referred to as a semi -parametric model for the hazard function. The survival function corresponding to (2.1) is then
(e.g., Lawless, 1982)

S(t; x) =exp[-exp(x'fl)_ Ao(u)du] (2.2)

The integral in (2.2) is called the baseline cumulative hazard function. Several methods are available for estimating
the baseline cumulative hazard function (Klein and Moeschberger, 1997).

Cox's model has become the most used procedure for modeling the relationship ofcovariates to a survival or other
censored outcome (Therneau and Grambsch, 2000). Its form is flexible enough to allow time-dependent covariates
as well as frailty terms and stratification. However, it has some restrictions. One of the restrictions to using the Cox

model with time -fixed covariates is its proportional hazards (PH) assumption; that is, that the hazard ratio between
two sets ofcovariates is constant over time. This is due to the common baseline hazard function canceling out in
the ratio of the two hazards. Thus, for fixed-time covariates, the exponent of a coefficient describes the relative

change in the baseline hazard due to that covariate.

The baseline hazard is typically considered a 'nuisance parameter,' and estimation of fl is done by maximizing a

profile likelihood with/]'0 (t) being substituted for an expression involving fl and x, as well as the times at which



failuresoccurred(KleinandMoeschberger,1997).Thisexpression is called the profile maximum likelihood

estimate of _0 (t). The likelihood with '_'0 (t) 'profiled out' is called the partial likelihood by Cox (1972).

For fixed-time covariates and independent observations, the partial likelihood is

fi exp(x_/3)
L(/1)=lir__ _a,

i= 1 ( •

where D is the number of events, d, is the number of events at time t i , and R(t i) is the risk set at time t i (the

number of subjects in the data set who have recorded DCS times or censored times later than or equal to time t i ).

The value of fl that maximizes (2.3) is called the maximum partial likelihood estimate (MPLE).

(2.3)

2.1. Stratified Cox Models

The model in (2.1) can be extended to account for stratification. The strata divide the subjects into disjoint

groups, each of which has a distinct (arbitrary) baseline hazard function but common values for the coefficients fl

(Therneau and Grambsch, 2000). The hazard function for an individual i who belongs to stratum k is then

,;t,(t; x_)= _ (t)exp(x,/$) (2.4)

Typically, strata are naturally defined within the context of the problem. For example, multi-center clinical trials
typically stratify on the clinic in which they are conducted (Therneau and Grambsch, 2000). However, the stratified
Cox model also allows a deviation from proportional hazards, and as such provides an alternative to the assumption

of proportional hazards. The hazard functions for two different strata do not have to be proportional to one another.
However, within a stratum, proportional hazards are assumed to hold. We take advantage of this use of stratification
for the DCS data.

The partial likelihood for stratified Cox models with K strata becomes a product of K terms, each of the form of
(2.3), but where i ranges over only the subjects in stratum k (k = 1..... K).

3. Description of Data

The HDSD (Conkin et al., 1992) contains records for groups of human volunteer subjects who were exposed

together to high altitude in one chamber test. Exposure records used for this analysis are from 1,321 individuals

who participated in chamber tests at JSC. This subset of the data was originally extracted for use with a different
analysis (Conkin, et al., 1998). The criterion for selection of a record in that study was that the record contained
certain detailed information about venous gas emboli (VGE)--the movement of gas bubbles into venous blood--

whose presence was proposed to be a precursor of DCS symptoms. The records also contained information on the
reported onset of DCS symptoms. One thousand three hundred and twenty-two records were selected based on this
criterion. In a previous analysis of DCS data (Chhikara et al., 1998), one observation had been discarded due to its

high value on a measure of influence, leaving 1,321 records. These are the records that we use for this analysis. In
this paper, we do not consider the information on VGE in the data set for any analysis here.

Although subjects were tested in groups, typically of around three individuals each, the grouping information
was not recorded in the data set. Each test involved one decompression. During a test, subjects in a group were
monitored for Doppler-detectable gas bubbles, and the test was terminated for a subject either upon reported inci-

dence ofa DCS symptom or, if the subject did not experience DCS, when the test period was over. Total test times
at altitude ranged from 20 minutes to over 12 hours, with a mean of 4.66 hours. Onset of DCS was recorded for a

subject if that subject reported any sign or symptom of Type I DCS. Thus, an observation for a subject was either



his or her report ed DCS onset time or the test termination time, whichever came first, if it was the test termination

time, the observation was considered Type I right-censored (Lawless, 1982). The data set contained 1,154 right-

censored observations, or a little over 87% of the total records.

For some tests, subjects were assessed at hourly intervals for DCS symptoms to ensure they were not neglecting to

report symptoms that were present. Because there were some individuals whose reported DCS onset was at one of

the hourly checkpoints, it may be that the symptoms of DCS occurred as far back as almost one hour prior to what

was actually recorded. The subjects for whom this was true were not indicated in the data set, but 25 records had re-

ported DCS times on the hour. We treated these DCS times as 'exact' because the way in which they were reported

may reflect how some DCS symptoms are reported during an EVA. Because of the importance of the task for which

an EVA is required, the time at which DCS symptoms are reported by a spaceflight crew member may not be when

the symp toms actually begin, but may be reported later after some inquiry.

In addition, a number of explanatory variables were measured for each group. In our analysis, we considered the

explanatory variables listed in Table l.

Table 1: Measured Explanatory Variables

EXER P2 (psia) PN2360 (psia) TR360

Minimum

Mean

Median

Maximum

SD

0 3.000 4.032 0.938

0.801 6.203 9.198 1.536

1 6.000 10.245 1.454

1 10.110 12.320 3.453

0.399 ! .953 2.326 0.342

The first variable in Table l, EXER, is an indicator variable showing whether the subject exercised repetitively

during his or her time at altitude. Repetitive exercise is done during the tests to simulate vigorous work activity

required on an actual EVA. P2 is the final environmental pressure reached in the exposure in psia. PN2360 is the

calculated partial pressure of nitrogen (in psia) in a designated theoretical tissue compartment after prebreathing any

oxygen-enriched mixture prior to ascent in the chamber. The calculation is obtained from a nitrogen-elimination

model detailed in Conkin et al. (1996). The model states that the partial nitrogen pressure reached in the compart-

ment after a specific time is a function of the initial nitrogen partial pressure in the tissue compartment at sea level

and of the ambient nitrogen partial pressure in the prebreathe mixture. A theoretical compartment with a half-time

elimination of 360 minutes was used in the model. Half-time is the time it takes to decrease to one-half of the differ-

ence in the initial nitrogen pressure minus final nitrogen pressure. The 360-minute half-time compartment was chos-

en in a different study out of a spectrum of different half-times ranging fro m 300 to 540 minutes. Each of these

half-time compartments was used in a model fitted to a data set obtained from the HDSD (Conkin et al., 1996).

The 360-minute half-time was chosen in that study based on log likelihood calculations and relevance to JSC.

The last variable, TR360, was not measured itself, but is a ratio of the preceding variables, PN2360 to P2. The

ratio represents a decompression stress index. When this ratio exceeds the fraction of nitrogen pressure present at

sea level (l 1.6/14.7 = 0.78), we would expect DCS to occur more quickly. In the models we consider, we do not

need to model both PN2360 and TR360 as covariates, and only use TR360. TR360 is more easily interpreted as a

unitless index of decompression stress, and can be used to make direct comparisons. Although PN2360 (and thus

TR360) is actually computed from an assumed model that may not be completely accurate, it is nonetheless treated

here as though it is measured without error. However, the calculated TR360 values are frequently used directly by

NASA in their tests of decompression procedures. Conkin et al. (1996) contains further information on the origina-

tion of the TR360 index.

Subjects were all determined to be in good physical condition and received the necessary orientation to the

chamber prior to taking part in the tests. The average ages of both males and females was 31 years. Of the 1,321

subjects, 1,030 were males and 291 were females. However, sex was not used as a covariate in this analysis. In the

types of decompression tests that are represented in the data set, gender is frequently not an important predictor of

4



DCS. Indeed, preliminary analysis suggests that sex does not add predictability to the models we consider here. A
more detailed description of the subjects in this analysis can be found in Conkin et al. (1998).

3.1. Exploratory Analysis

To provide some initial insight into the characteristics of the data and to facilitate further discussion, we
constructed several cross-tabulations of explanatory variables by proportion of DCS cases. For the tables,

continuous variables were categorized into quartiles. Table I a shows the DCS proportions for TR360 and EXER,
and Table I b shows the proportions for P2 and EXER. Table 1a also shows that those subjects with higher TR360
had increasingly greater incidence of DCS, and this trend did not change much across EXER. The marginal totals

across TR360 categories show that those subjects who exercised at altitude had a slightly greater incidence of DCS

symptoms. Table I b shows that in general, subjects exposed to a lower final ambient pressure had a greater
incidence of DCS. But, the highest incidence category was the (4.30, 6.00] category.

Table la: Proportion DCS by TR360 and EXER

TR360 categories
I I

 o93,1311 I (131,1.451 I (i.45,1.78]
Marginal

(!.78,3.451
Proportions (EXER)I I

EXER =0

2/64 = 0.03 ] 1/91 = 0.01 l 11/63 = 0.17 [ 13/'45 = 0.29 I 27/263 = 0.10

EXER =i

5/278=0.02 I 13/276=0.05 ] 66/325=0.20 [ 56/179=°.31 I 140/1058=0'13

Marginal Proportions (TR360)

7/342 = 0.02 I 14/367 : 0.04 I 77/388=0.20 I 69/224:0.31 I

Table Ib: Proportion of DCS by P2 and EXER

P2 categories

I I I Marginal(2.99, 4.30] (4.30, 6.001 (6.00, 7.801 (7.80, I0.111 Proportions (EXER)

EXER =0

16/110=0"15 I 11/46 = 0"24 I 0/68 : 0.0 I 0/39=0"0 I 27/263=0'10

EXER =1

69/387=0.18 I 36/130=0.28 I 34/336=0.10 I i/205=0.005 I 140/1058=0.13

Marginal Proportions (P2)

85/497 = 0.17 I 47/176 = 0.27 I 34/404 : 008 I 1/244 = 0.004 I

Next, we explore the influence of the explanatory variables on the time to onset of DCS, in hours. To do this, we
estimate the survival and hazard rate nonparametrically (i.e., ignoring all covariates). For the survival curve, we use
Breslow's nonparametric estimator modified for adjustment for ties by Fleming and Harrington (1984). For each

recorded DCS time, ti, define d N(t i) to be the number of DCS cases in the data set with that recorded time, and



define_(ti ) as the number of subjects in the risk set at time ti . Also, define df_(t i ) = d N(t;)/Y(t_ ). Then,

Breslow's estimator of the survival curve for the DCS data is

SB(t) = l"I expt-d/_,(tj )]

j: t)-< t

(3.1)

(Therneau and Grambsch, 2000, p. 14-16). The adjustment for tied event times replaces df_(t i ) with

S" d Y_t)-1 r- -- 1-1

L Y(ti ) - jj • This estimator (with adjustment for ties) is very similar to the familiar Kaplan-Meierz---, j=0

estimator of survival. Our reason for using this estimator instead of the Kaplan-Meier estimate pertains to the
method we use to deal with ties when fitting a Cox model. That is, the same method for dealing with ties is
used in the Cox model fitting.

For the nonparametric hazard estimate, we use the Nelson-Aalen estimator (Collett, 1994, p. 28). This hazard

estimate is constant in the interval t_y_ < t <t(j+_ and for event times t(j) and tlj+l _ , and it estimates the risk of

DCS per unit time in this interval. The hazard estimate is computed as

/_(t) - dj
nj(tU+l)-t(j))' t(j) <t<t(j+j), j=l,...,r--1

(3.2)

where dj is the number of DCS events at time t(j), and nj is the number at risk for getting DCS at that time. The

hazard is not estimated for the interval beginning at the last observed event time. Thus, the hazard estimate is
truncated at the last observed event time in the data set.

Figures la and lb plot several survival curve estimates. The first panel in Figure l a shows the overall estimate
of survival by hour as a dark solid line, along with 95% point-wise confidence intervals (as dotted lines) comput-
ed on the log survival using Greenwood's variance estimate (Therneau and Grambsch, 2000, p. 16). The 'X's denote

censored times that do not coincide with DCS times in the data set (there is substantial overlap of censored times).
The second panel stratifies the estimate by whether exercise was done at altitude. The first panel in Figure 1b strat-

ifies the estimate by quartiles of TR360, and the second panel stratifies the estimate by quartiles of P2. For clarity,
confidence intervals are excluded from the plots that have stratified estimates.

In the right panel of Figure l a, the crossing of the survival curve estimates (see point 'A') indicates that the

observed incidence of DCS was greater after one hour for those who exercised than for those who did not exercise
at altitude. Prior to one hour, incidence of DCS was slightly higher for those who did not exercise. This may imply
that the corresponding actual hazard functions for each exercise group are not proportional. However, point-wise

confidence intervals on the two survival estimates (not shown) are wide enough to question whether an observed
crossing is real. If the survival curves do indeed cross, this has implications for fitting traditional proportional
hazards models such as the Cox (1972) model and certain parametric survival models that assume that the true

hazards are proportional across covariate groups.

The right panel in Figure Ib shows that as TR360 increases, the survival probability at any time point decreases, as
would be expected. P2 generally shows the opposite pattern. There is no strong evidence of crossing survival curves

for either the TR360 categories or the P2 categories.
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The survival curves in Figures la and lb give information about survival probability over time, but present

cumulative information. On the other hand, a hazard plot will show how the instantaneous risk of DCS changes

by hour. For the same variables and categories used in Figure I, we computed the estimated hazard function using

(3.2). Because the graph of this estimate by time was very rough and difficult to interpret, we instead plotted the

observed DCS times by the values obtained from (3.2), then fit a kernel density estimate over these values using

the S-PLUS function muhaz (Hess et al., 1999). These smoothed curves were much easier to interpret. The curves

are plotted in Figure 2.

Figure 2 shows that the estimated hazard for EXER = i increases much more rapidly than that for EXER = 0

and has its peak between one and two hours. The hazard rate declines after this and eventually is below the rate for
EXER = 0 after about three hours. The hazard rate for EXER = 0 rises slightly, then is roughly constant between 2.5

and four hours before it sharply declines. There is no real indication of the crossing survival curves that were seen

in Figure la at around the first hour. The slight crossing in the initial few minutes of the first hour disappears with

the use of a higher local bandwidth in that area. Thus, this slight crossing may in fact be an artifact of random

fluctuation.

The hazard estimates for the TR360 categories display the order that is expected based on their implied risk. The

estimates for the first two categories starting from the smallest category are mostly flat. The hazard estimates for the

two highest TR360 categories increase initially, then decline. (This pattern also appeared for the hazard estimate of

the highest two PN2360 quartiles, which are not plotted). These patterns persisted even with higher bandwidths for

the density estimates. Thus, risk of DCS is clearly related to TR360, but it may gradually have less impact over time.



The declining pattern appears across exercise conditions as well. But, the hazard rate estimate for a particular TR360
category differs depending on whether exercise is done at altitude (lower right panel). The hazard is much greater in

the initial hours when exercise is done. Only the last two TR360 categories are shown in the figure for clarity, as the
hazard functions are all very small for lower TR360. However, the kernel density estimate of the hazard rate is

actually higher for EXER = 0 than for EXER = I when TR360 < 1.31, at almost all time points.

Finally, the hazard estimates for P2 clearly show that the most hazardous category for P2 is between 4.3 and 6.0

psia.
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Figure 2: Estimated hazard plots by EXER, TR360 quartiles, and P2 quartiles.

Thus, Figure 2 shows some evidence against the PH assumption. It appears that the covariates may not act
persistently on the hazard in that the estimated hazard rate for 'high risk' groups (e.g., EXER = 1 or high TR360)
is not at a roughly constant distance from the hazard rates for other groups, and sometimes falls lower than that for

lower risk groups after some time. Thus, some covariates may have less relevance on the hazard after a few hours•
Also, the converging hazards of P2 and EXER by TR360 are not consistent with a PH assumption. However, the
hazard estimates in Figure 2 are useful largely for exploratory purposes. We examine the assessment of PH in

more detail in the next section, where we fit several Cox models and perform assessments based on the fit.

4. Assessment of Proportional Hazards

In this section, we assess whether hazards can be considered proportional (PH assumption) across all covariates.
We use several graphical techniques to assess model assumptions and the fit of a potential Cox model that includes

covariates from Table I. For binary covariates, a comparison of nonparametric survival curve estimates may be suf-



ficient to decide PH because if the hazards were proportional, the survival curves for the two conditions would
separate exponentially. The two curves would not cross each other. For example, Figure la showed a plot of esti-

mates of survival probabilities stratified by exercise condition. The survival probabilities did not take into account
the other covariates. The crossing curves at around hour = I indicated potential non-PH across exercise, barring any
assessment of uncertainty. Non-PH would imply that the relative risk of DCS changes over time (hours exposed) for

subjects who exercise versus subjects who do not exercise during exposure.

For continuous covariates it is not sufficient to rely only on stratified survival estimates to assess PH because the

choice of stratification points is subjective and arbitrary in some cases. Thus, we need other alternatives to assess PH
across the values of continuous covariates. One alternative is via the use of time-vary ing coefficients (Grambsch and

Therneau, 1994). That is, one or more coefficients multiplying their respective covariates varies with time. If the co-

efficient multiplying a covariate is not constant over time, then the impact of that covariate on the hazard varies over
time, leading to non-PH. If PH holds, a plot of the coefficient versus time will be a horizontal line. This plot is sup-
erior to the hazard estimate plots in Section 3 because we are not restricted to certain categories of continuous co-

variates. Also, we can perform formal tests for specific forms of departure from PH. The next subsection fits a
Cox model. In it, we explain how the test of time-varying coefficients is conducted.

4.1. Initial Fit of a Cox PH Model

We fit the Cox PH model in (2.1) to the DCS data using partial maximum likelihood estimation. The S-PLUS
function coxph was used to do the estimation, with ties handled via Efron's method (Therneau and Grambsch,
2000, p. 49, or S-PLUS, 2001, p. 390). This method of handling ties is similar to the adjustment used for the non-

parametric survival estimate (Therneau and Grambch, 2000). We also included the covariates in Table I, with the
exception of PN2360. The fit of this model is shown in the Model 1 column of Table 2 with approximate standard

errors in parentheses (obtained from the inverse of observed information, as computed from the partial likelihood).

Thus, for two individuals differing by one unit in TR360 (all else equal), the individual with a higher TR360 has a
higher expected risk by exp(2.142) = 8.52-fold. But, for two individuals differing by one unit in P2, the individual
with lower P2 has a higher expected risk by 100*exp(0.307) % = 136%. Exercisers versus non-exercisers have

approximately a 311% increase in risk.

Table 2: Maximum Partial Likelihood Estimates for Fitted Cox Models

-2 Log LH

AIC = -2 Log LH + 2p

Parameter Estimates

/3, (TR360)

32 (PN2)

/33 (EXER)

/_4 (TR360:EXER)

Model 1 Model 2

2120.01 2078.42

2126.01 2086.42

2.142 (0.201)

-0.307 (0.060)

!. 135 (0.265)

1.337 (0.271)

-0.252 (0.067)

-3.663 (0.776)

2.481 (0.399)

In the Model 2 column of Table 2, we show the fit of a model with an interaction term in TR360 and EXER
(TR360:EXER, in the table). Of the two models, Aikaike's Information Criterion (AIC) measures show that the
interaction model (Model 2) fits better. With this model, the relative change in risk for repetitive exercisers versus

non-exercisers depends on TR360. For TR360 greater than about 1.48, the predicted risk for exercisers is higher

than for non-exercisers. Otherwise, the reverse is true. This relationship is consistent with the survival curves in
Figure I and the hazard estimates in Figure 2 because risk is not uniformly higher for exercisers. In particular, as

mentioned in the discussion about Figure 2, the kernel density estimate of the hazard rate for non-exercisers was



higherthanthat for exercisers when TR360 < 1.3 I, for all time points. However, these results may only reflect the
lower impact of exercise on DCS when TR360 is lower, instead of implying that no emrcise is more hazardous in

this TR360 range.

4.2. Test of Time-varying Coefficients in a Cox PH Model

To check whether the Cox model fit is valid, we must check the proportionality assumption. That is, we must check

whether the effects ofcovariates on risk remain constant over time.

To illustrate the test of time-varying coefficients, we first describe the Schoenfeld (1982) residual. To do this, we

use the notation of Therneau and Grambsch (2000). Let tI ,..., td be the d unique ordered event times, and let Xi(s )

be the p × 1 covariate vector for the ith individual at time s. For time-fixed covariates, this is just X i . Also, define

the 'weighted mean' of the Xi(s ) over those still at risk at time s as

"_(t_,s) - E Y_(s)exp(X'(s )fl)X_(s) (4.1)

EY_(s)exp(X,(s)fl)

where Y//(s) is the predictable variation process indicating whether observation i is at risk at time s, so that

Yi(s) = l if observation i is still at risk at time s and is zero otherwise. The estimate fl comes from fitting a Cox

PH model. Then, a Schoenfeld residual is a p × 1 vector that is defined at the kth event time as

(4.2)

where N/(s) is a counting process that counts the number of events for observation i at time s. Thus, sk sums

the quantities Xi(t k) -x-(fl,t k ) over observations that have experienced the event by time t k . With no tied event

times, the kth Schoenfeld residual is the sum of contributions to the derivative of the log partial likelihood by sub-

jects who have experienced events by t k (Hosmer and Lemeshow, 1998).

A scaled Schoenfeld residual is (4.2) divided by an estimate of its standard deviation. Therneau and Grambsch

(2000) show that the standard deviation is the square root of the weighted variance of Xi(s ) at time s, where the

weights are the same as in (4.1 ). The scaled Schoenfeld residuals are used in a test of proportional hazards.

For thejth covariate, Grambsch and Therneau ( ! 994) express a time -varying coefficient as

flj(t) = flj + _tjgj (t) (4.3)

where gj (t) is a specific function of time. They show that the scaled Schoenfeld residuals have, for thejth

covariate, a mean at time t of approximately ]_jgj (t). Thus, a plot of the scaled Schoenfeld residuals by the event

times may assess whether the coefficient _'j is zero or not, and what the function gj (t) might be. A linear re-

gression line can also be fitted to the plot along with a test for zero slope. A nonzero slope is evidence against PH.
As an alternative method of plotting, we can add the estimate of the regression coefficient to the scaled Schoenfeld

residual to get a plot of the regression coefficient (as in (4.3)) by time. We have done this in Figure 3.

Figure 3 shows scatter plots of the scaled Schoenfeld residuals by time for each single covariate from Model 2 of
Table 2. The smoothed curve in the plot is a natural spline with four degrees of freedom. The curve gives an indi-
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cation of the path of the regression coefficient for that covariate by time. Ninety-five percent confidence bands

are also given by dotted lines, using the variance of the estimated spline curve (Therneau and Grambsch, p. 134-

135). The horizontal line is the estimate of the coefficient from the Cox model in Table 2. The p-values in the right-

hand corners come from a test of significant linear change in the coefficient over time (Therneau and Grambsch,

2000, p. 131-134).

Figure 3 indicates a small changing effect of P2 on the hazard, but it is not significantly linear at the 0.05 level.

Also, the confidence intervals contain the fixed estimate from Table 2. The change appears to be due to a small set

of residuals at higher time points. Figure 3 shows the coefficient becoming more negative over time. Thus, risk

increasingly lowers over time with higher ambient pressure at final altitude.
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Figure 3: Smoothed scaled Schoenfeld residual plots for Model 2

(test of time -varying coefficients).

We can also use monotonic functions of time g(t), such as log(t), on the abscissa• In this case, the p-value

corresponds to a test of the addition of the time-dependent covariate X *g(t) into the model, implying non-PH in

Xifthe covariate is significantly different from zero (Therneau and Grambsch, 2000). Other specifications for g(t)

lead to various tests for PH in the literature. See Therneau and Grambsch (2000) for details.

We tried the transformation g(t) = log(t). Figure 4 shows scatter plots of the scaled Schoenfeld residuals by

time on the log scale for each predictor term in Figure 3. None of the tests of log linear change in the coefficients

are significant. However, many of the spline fits show clear nonlinear change, but these are due only to a few ex-

treme points• For example, the time-varying coefficient for EXER appears to be strongly influenced by a few points

at the low end of the time scale. In this case, exercisers have a higher hazard initially than non-exerc isers. The haz-

ard risk remains fairly constant throughout the rest of the study time. This pattern is consistent with a lessening of

the importance of exercise on DCS over time.
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Figure 4: Test of time-varying coefficients for Model 2 using Log(Time)
as the time transformation.

In a model excluding the interaction, we found significant evidence of time-varying coefficients for all of the

variables. Hence, we conclude that Model 1 of Table 2 is not an appropriate PH model.

One problem with the significance test for a nonzero slope is that, because it is based on an ordinary least-squares
line fit to the scaled Schoenfeld residuals, it is heavily influenced by outliers. Time transformations that are less

influenced by out liers include rank time and the Kaplan-Meier (KM) transformation gj (t) = 1 -S(t), where S(t)

is the KM estimate (Therneau and Grambsch, 2000). (For DCS data, all p-values for the KM transformation were
above 0.12.) Alternatively, we might use a rank correlation test or just rely on the smoothed spline fits to the scatter

plots as a way to visualize non-PH, especially ifa nonlinear trend were suspected. There is also a limitation in the
form ofnon-PH detected by scaled Schoenfeld residuals. Complicated forms ofnon-PH that involve interactions
between covariates and time-dependent coefficients (e.g., a different coefficient function for each value or set of

values ofa covariate) cannot readily be detected unless we suspect them and construct a Schoenfeld plot for that
subset of values.

It is possible that evidence of time-varying coefficients appears because of other causes instead of non-PH.
Therneau and Grambsch (2000) list some of these reasons, including omitted covariates and incorrect functional

forms for covariates. We checked appropriate functional forms for the continuous covariates in the model (TR360

and P2) by substituting restricted cubic splines for each in the model. Plots of the fitted smoothing spline in P2
against the log hazard show that a quadratic term in P2 may be more appropriate than a linear term. A model with

both linear and quadratic terms in P2 fits better (AIC = 2071.72) than a model with only a linear term. Thus, we

include a quadratic term in the final model. When this term is included in the model, evidence of a time-varying
coefficient is not as strong as that seen in Figures 3 and 4. Table 3 shows the coefficients of this model (called
Model 3), and Figure 5 shows the results from tests of time-varying coefficients. We used mean deviations in

P2 to reduce the correlation between estimated coefficients on the linear and squared terms. In Figure 5, D.P2 =

(P2 -P2 ).
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Table 3: Maximum Partial Likelihood Estimates

for Third Cox Model

Model 3

-2 Log LH

AIC

Parameter Estimates

2061.72

2071.72

J_l (TR360)

/3 2 (P2-P2)

f13(P2-P'2) 2

f14 (EXER)

fls (TR360:EXER)

1.893 (0.337)

-0.515(0.122)

-0.247 (0.072)

-2.096 (0.928)

1.583 (0.488)
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Omitted covariates are always a possibility and can cause non-PH (Therneau and Grambsch, 2000). The addition

of a frailty term may account for unmodeled covariates. We briefly discuss this issue later when we mention frailty
models in Section 7.

In the next subsection, we illustrate some graphical methods for testing PH after having fit a Cox model.

4.3. Graphical Tests for PH After Fitting a Cox Model

The two tests we apply in this section are the Andersen plot (Andersen, 1982, Klein and Moeschberger, !997) and
the Arjas plot (Arjas, 1988). The Andersen plot is based on the estimated baseline cumulative hazard function. The

plot assesses each covariate for PH separately, given that the other covariates in the model satisfy PH. Continuous

covariates must be categorized. First, a Cox model is fit using all covariates except the one being tested, and the fit
is stratified on the covariate being tested. Denote the covariate being tested by the subscriptg. Then, an estimate of

the baseline cumulative hazard function (using the covariate data) is obtained for each stratum. Suppose there are K

strata or categories of a covariate, and write H0_ (t Ix(g)) as the estimated baseline cumulative hazard for the kth

stratum, given all covariates except the gth (denoted by Xtg ) ). The Andersen plot graphs H0k (t Ixtg)) versus
^

H0, (t Ix_gl ) for k = 2 ..... K for all t. If the Cox PH model holds, the plotted curves should be straight lines through

the origin, as the strata theoretically have proportional baseline hazards. The slope of the line should estimate the
proportionality constant.

The estimate of the baseline cumulative hazard that we use is from Breslow (Klein and Moeschberger, 1997, p.

259). Let tl, ,...,tD_ denote the distinct DCS times in the kth stratum, and di, be the number of DCS cases from this

stratum at time t,k. Then, Breslow's estimate is

di k

(4.4)

where W(ti, ;fl) = Zj_ (,,)exp(x_fl), R(t,, ) is the risk set consisting of those subjects in stratum k still eligible

to experience DCS at time t,k, and fl is the MPLE from fitting a Cox model to all observations.

Figure 6 shows the Andersen plots for two covariates, P2 and EXER. On each graph is superimposed the 45-degree
line for reference. P2 was categorized into quartiles. The first quartile (P2 <_ 4.3) was used as the first stratum, and

is plotted on the abscissa. The times at which the estimated cumulative baseline hazards were computed ranged from
zero to 13 hours, with increments of 0.05 hours. For the Andersen plot for EXER, the MPLE in the denominator of

(4.4) did not include a strata-by-TR360 interaction, even though Model 3 included an interaction between EXER
and TR360. The Andersen plot assumes the coefficients describing relative risk ofcovariates that satisfy PH do
not change across strata.

In the left panel of Figure 6, the cumulative hazards for the second and third strata for P2 roughly follow the 45-
degree reference line up to a value of around 0.13, indicating rough agreement among the cumulative hazards of the
first three P2 strata for this range. The 'agreement' breaks down as the cumulative hazards increase further, how-

ever. The stratum with P2 > 7.8 had only one failure. Thus, its cumulative hazard is mostly at zero and is not
shown. Regardless of which stratum is plotted on the abscissa, the same visual conclusions can be made.
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The Andersen plot for EXER in the right panel of Figure 6 shows a slightly concave pattern; thus, the hazard rate

gap between EXER and no EXER may be slightly decreasing with time. This pattern was also seen in a plot of the

ratio of the cumulative baseline hazards across EXER, estimated without covariates (not shown).

It is difficult to determine based on the Andersen plots in Figure 6 whether the PH assumption is violated. The

graph in the right panel could be considered roughly linear through the origin. The same might be said for at least

one of the curves in the left panel. Because these graphical tests for PH are illustrative and sometimes hard to inter-

pret, Klein and Moeschberger (1997) suggest that several graphical assessments be compared. Thus, we also com-

pute Arjas plots (Arjas, 1988) for each of the two covariates above. Below we give the basic idea of the plots. The

appendix gives more details.

Arjas plots compare the observed cumulative number of failures to the estimated cumulative number of failures for

each covariate being examined for PH. The estimated cumulative number of failures is derived from a model fitted

to all covariates except the one being examined for PH. Each covariate to be examined is divided into K categories.

An Arjas plot graphs the expected cumulative number of failures, Ek (t_), by the observed cumulative number of

failures Nk (ti,) at time t_, for the ith time in the kth category. Klein and Moeschberger (1997) give some guidelines

for interpretation of the plot. If the covariate does not belong in the model, a plot of Nk(ti, ) by Ek (tq) should be

close to a 45-degree line through the origin, lfthe covariate does belong in the model, the Arjas plot will give graphs

for each category that are approximately linear, but with slopes differing from one. If the covariate in question has a

non-PH effect on the hazard rate, the graphs will differ nonlinearly from the 45-degree line. Certain types of depart-

ures from linearity can give an idea of the relationship between hazards across categories or strata. For example, if

the actual model is one where each category or stratum has a separate baseline hazard function (a stratified Cox

model), where the ratio of the baseline hazard for categoryg to category g' is increasing with time, the respective

cumulative baseline hazard functions will be concave for categoryg and convex for category g'. This pattern will

be reflected in the Arjas plot.

Figure 7 shows Arjas plots for the two covariates P2 and EXER, with 45-degree lines superimposed. For the

left panel, the curves for each level of P2 grow linearly away from the 45-degree lines. (The curve for P2 > 7.8

contained one point because there was only one failure for that stratum. Thus, its curve is not shown.). Also, the

curve for EXER = 1 in the right panel is roughly linear with a slope less than i .0. Based on these graphs, it appears

that both P2 and EXER should be included in the model. In addition, there may be a non-PH effect of exercise on

the hazard rate. There may be a need for different baseline hazards across EXER conditions because of the concave-

like curve for EXER = 0. Thus, the ratio of EXER to no EXER baseline hazards may be decreasing with time.
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Figure 7: Arjas plots for assessing the PH assumption for Model 3 for (left) P2 and (right) EXER.

Based on the above assessments, we can conclude that the hazard rate may not be proportional over time across

categories of some covariates. Specifically, the effects of covariates on the hazard rate may change over time. There

are several options for attempting to correct non-PH or to be used as alternatives to a PH model. One alternative is to

partition the time axis into sections where PH holds. Thus, to handle possible non-PH across EXER, we could parti-

tion the time axis at about one hour and only use failures after one hour in a Cox model. With so much censoring,

however, this option is not viable for DCS data. Another option is to use an accelerated failure time (AFT) model.

Therneau and Grambsch (2000) show these models can be detected by the time-varying coefficient tests mentioned

in this section. AFT models are most appropriate in settings in which the time scale of the hazard function is either

slower or faster (multiplicatively) than the time scale on which the measurements are made, as the covariates act by

expanding or contracting time by a factor, exp(Xfl). Another alternative to using the traditional Cox model is to

stratify the model across levels of one or more covariates. We then assume that PH holds within each stratum. Two

candidate covariates on which to stratify are EXER and P2, since these variables showed the most evidence of non-

PH. In the next section, we describe the stratified Cox PH model. Then, we fit two stratified models and check PH

within each stratum.

5. Stratified Cox Proportional Hazards Model

5.1. Fit of Stratified Cox Proportional Hazards Models

Two stratified versions of the Cox PH model were fit to the DCS data. In the first model, we stratified on EXER

conditions. In the second model, we stratified on quartiles of P2. Stratification entails fitting separate baseline haz-

ard functions across strata. A baseline hazard function represents the hazard rate over time for an individual with

all modeled covariates set to zero. With a stratified Cox model, a proportional hazards structure does not necessarily

hold for the combined data, but is assumed to hold within each stratum. However, the coefficients on the included

covariates are common across strata so that the relative effect of each predictor is the same across strata, unless there

is a significant strata-by-covariate interaction, which means that the effect of the covariate differs within strata. The

estimated coefficients of a stratified Cox model are computed using the entire data set.

One disadvantage of using a stratified model is that an effect of the stratification covariate cannot be estimated in

the model, at least in the usual sense of a coefficient estimate. This is a limitation if the stratification covariate is not

merely a 'nuisance' variable that is recorded, but is of no substantive interest for the study (e.g., the clinic or hospital

name at which recordings were made). However, ifa model has been stratified on an important continuous variable

that has been categorized, it is possible to also include the continuous variable in the model and thus estimate a rela-
tive effect for that covariate. The relative effect of the covariate is assumed to be the same within each stratum. This

will be done for the continuous covariate P2. In addition, the baseline hazard function within each stratum can also

be estimated using; for example, Bresiow's estimate analogous to (4.4).
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Table 4 shows the coefficient estimates of two stratified Cox models fit to the DCS data. Standard errors in paren-
theses were computed using the robust 'sandwich' variance estimator of Lin and Wei (1989) and implemented as

an option in the S-PLUS function coxph. The first model (Model 4) is stratified on EXER and includes all covariates
from Model 3 with the exception of EXER. It also includes a coefficient for the interaction between EXER strata
and TR360, implying that the relative effect of TR360 on the hazard differs within each EXER stratum. This coef-

ficient is indicated by fl_ (TR360:EXER=l) in the table. This notation implies that the term t5 is only present in

the prognostic index, exp(Xfl), for exercisers. That is, 100exp(fl_ + t5 )% = 100exp(0.718 + 2.71)% =

3,081% represents the increase in risk per unit of TR360 for exercisers, and 100exp(fll )% = 100exp(0.718)%

= 205% represents the increase in risk per unit of TR360 for non-exercisers. Thus, there is a substantial increase in

risk if one is exercising repetitively at altitude.

The second model (Model 5) stratifies on quartiles of P2, but it also includes P2 as a continuous covariate, as it

appears in Model 3, as linear and quadratic terms. Model 5 purports that the quadratic effect of P2 is the same within
the range of P2 values for each category. According to AIC, both models fit the data better than does Model 3. The
model stratifying on P2 (Model 5) appears to fit better, although some of the standard errors are higher than they are

for Model 4. Model 5 may be preferable because it allows a coefficient estimate for the relative effect of EXER on
the hazard rate. Before examining this model more closely, we check the PH assumption again.

Table 4: Maximum Partial Likelihood Estimates for Stratified Cox Models

-2 Log LH
AIC

Parameter Estimates

3, (xR360)

f12 (P2-P2)

/33 (P 2-P-2 )2

34 (EXER)

f15 (TR360:EXER)

f15 (TR360:ExER=l)

Model 4

(stratified on EXER) .

1916.90

1924.90

2.710 (0.241)

-0.512 (0.129)

-0.246 (0.074)

NA

0.718 (0.247)

Model 5

(stratified on P2)

1732.11

1742.11

2.581 (0.504)
0.136 (0.336)

-0.326 (0.110)

-2.450 (0.988)

1.711 (0.532)

NA

5.2. Test of PH Assumption for Stratified Cox Models: Test for Time-varying Coefficients

The assumption of PH within strata can be checked using time-varying coefficients as in Section 4. However, the

same limitations apply. That is, only certain types of non-PH can be detected. There is another complication in using
the tests of Section 4. The variance used to compute the scaled Schoenfeld residuals is based on an overall estimate
of the covariance of the covariates. The use of strata implies that the covariate patterns in the data may not be the

same across strata and may definitely not be the same if there is evidence of strata-by-covariate interaction. Table 4
(Model 4) shows evidence for a significant strata-by-TR360 interaction, since the coefficient estimate is more than

twice the magnitude of its approximate standard error. Thus, the computation of scaled Schoenfeld residuals requires

a modification given in Therneau and Grambsch (2000, p. 142). The modification uses a within-stratum variance to
compute the scaled Schoenfeld residuals within each stratum.

Figure 8 shows the result of the Therneau and Grambsch (2000) test for coefficients that vary linearly with time

(i.e., time is represented on the identity scale). For the graphs that pertain to P2, the abbreviation D.P2 = (P2- P2 ),
as in Section 4.2. The p-values for the tests appear in the upper-right comers, and dotted-dashed horizontal lines
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show the MPLEs from Table 4. Smoothed spline fits and their 95% confidence intervals are superimposed. The
point-wise confidence intervals, which are computed automatically by the S-PLUS function plot.cox.zph, assume

that the variance of the Schoenfeid residuals is constant over time. To check this assumption, we also computed the
confidence intervals at each unique event time using the method in Grambsch and Therneau (1994). The two sets of

confidence intervals were almost identical. We present the confidence intervals from the latter method in Figure 8.
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Figure 8: Test of ti me-varying coefficients when stratifying on EXER: smoothed scaled

Schoenfeld residuals plot.

The p-value for D.P2 shows significant linear change, but the fitted spline through the residuals shows little
variability. On the other hand, the p-value for TR360 is nonsignificant, but the smoothed spline fit shows a slight
curvature. The magnitude of the slope was about 0.08 for both variables. The difference in significance is due to the

relative variability of residuals for each covariate. The fact that the MPLE is not always contained within the given
95% confidence intervals on the spline fit may be indicative of a changing coefficient with time. Thus, stratifying
only on EXER does not seem to have removed non-PH. The relative effect of TR360 appears to increase initially
over time before it decreases after about 1.5 hours.

Figure 9 shows the result of the Therneau and Grambsch (2000) test after stratifying on quartiles of P2. In Model

5, we also include P2 as a continuous covariate. But, Figure 9 does not reflect a model with P2 as both a stratifying

variable and a covariate in the model. This will not likely affect the test because the term yjgj (t)× P2, using the

notation in equation (4.3), could just be absorbed into the baseline hazard function for the particular stratum of P2.

None of the p-values in Figure 9 shows significant linear change, and the fitted splines through the residuals show
little curvature. Furthermore, the MPLEs are contained within the 95% confidence intervals on the spline fit. Plots

using log time, as well as other simple monotonic functions of time, showed relatively similar results.

In the next subsection, we further assess PH for a model that stratifies on P2.
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Figure 9: Test of time-varying coefficients when stratifying on P2 (Model 5): smoothed scaled

Schoenfeld residuals plot.

5.3. Graphical Tests for PH After Fitting a Stratified Cox Model

Andersen plots and Arias plots are easily modified for construction with stratified models. For a model stratifying

on quartiles of P2 (Model 5), an Arias plot can be constructed for assessing whether EXER should be stratified as
well. The resulting plot is shown in Figure 10. The plot looks better than the analogous plot in Figure 7 for the
EXER = 0 condition, as some of the nonlinearity is removed. However, the curve for EXER = 1 is slightly

more nonlinear.
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Figure 10: Arjas plot for assessing the PH assumption
for Model 5 for EXER.
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The corresponding Andersen plot in Figure I 1 for EXER looks much more linear than the analogous plot in Figure
6. Thus, the cumulative baseline hazards appear to be roughly equal for the EXER = 1 and EXER = 0 conditions.
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Figure 11 : Andersen plot for assessing the PH assumption for
Model 5 for EXER.

5.4. Expected Survival from a Stratified Cox Model

The expected, or predicted, survival curve based on Model 5 was computed for hypothetical individuals with certain

values on the explanatory variables. The basic estimated expression is the survival curve in (2.2), with the MPLEs

substituted for i_ and an estimate of the baseline survival substituted for S O(t) = exp(-n 0 (t)), where H 0 (t) is

the baseline cumulative hazard function. The method of estimation for H 0 (t) was the Fleming-Harrington (F-H)

method (Therneau and Grambsch, 2000, p. 267), implemented as an option in the S-PLUS function survfit. This

method is similar to using Breslow's estimate for H 0 (t), but it is appropriate for tied data. There was virtually no

difference between the F-H and Kalbfleisch-Prentice methods. The reason for choosing the F-H method is that it

deals with tied events in the same way that Efron's approximation deals with tied events in obtaining the partial
maximum likelihood estimates (Therneau and Grambsch, 2000).

The left panel of Figure 12 shows expected survival probabilities for the midpoints of the first three quartile
categories of P2, with remaining covariates TR360 = 1.60 and EXER = 1. (The fourth P2 category was omitted
because there was only one failure, and the estimate of its baseline cumulative hazard function was therefore un-

reliable). The right panel of Figure 13 uses a TR360 value of 1.75. Confidence intervals are omitted for clarity. For
both TR360 values, the predicted survival probabilities are roughly the same for the first hour and a half. After that,

the second category (4.3 < P2 < 6.0) is the most risky regardless of TR360 value.

To the extent that the expected survival can be compared with the nonparametric estimates in Figure Ib,
predicted survival appears somewhat more consistent with the nonparametric estimates when the TR360 value

is higher. Interestingly, the first P2 category is predicted to survive longer than the third category, whereas the

nonparametric estimate claims the reverse. However, the nonparametric estimates are not constructed at specific
covariate values. Thus, a direct comparison between Figure 12 and Figure lb is unwise. Ifa value higher than the

midpoint of each P2 category is used for the hypothetical individual, the third P2 category is expected to survive
longer than the first category. Note, however, that the highest P2 category is not necessarily automatically the least
risky of the four categories because it is not low ambient pressure per se that contributes to DCS. It is how ambient

pressure compares to nitrogen partial pressure that is important in the contribution to DCS.
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Figure 12: Expected survival for hypothetical individuals who exercised at altitude
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Figure 13 shows expected survival for non-exercisers, with TR360 values of 1.60 and 1.75 for the left and right

panels. The difference between Figure 13 and Figure 12 is a matter of degree, as would be expected from the model
that was fit.
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Figure 13: Expected survival for hypothetical individuals who did not exercise at
altitude with left: TR360 = 1.60 and right: TR360 = 1.75.

In the next section, we discuss aspects of lack of fit in a model stratified on P2 quartiles.

5.5. Lack of Fit in the Stratified Cox Model

Residuals for the Cox model are not as useful in directly assessing global model fit as are residuals from a linear

model or another type of parametric model (Therneau and Grambsch, 2000, Chapter 4). However, certain types of
residuals can be used for specific purposes. And, some authors use residuals upon which to base global assessments

of goodness-of-fit of a Cox model (e.g., Parzen and Lipsitz, 1999). In this subsection, we discuss the use of residuals

and global goodness-of-fit tests to assess the fit of the stratified Cox model.

5.5.1. Deviance Residuals and Normal Deviate Residuals for Assessing Poorly Predicted Individuals

The deviance residual can be used for identifying 'poorly predicted' individuals (S-PLUS, 2001 ). The deviance

residual is a standardized version of the martingale residual. For fixed-time covariates, a martingale residual is de-

fined for each individual by
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Mi = Ni - exp(x,r_) t7/o (_, t_ ) (5.1)

where N i is the number of events for individual i at time t/(the number will be either 0 or 1 for these data).

The estimate of the cumulative baseline hazard function at time ti, I?Io(_, t_ ) is Breslow's estimate in (4.4). The

martingale residual has the interpretation of the observed number of events for each individual minus the condition-
ally expected number given the fitted model and the follow-up time [0, ti]. Thus, martingale residuals measure 'ex-
cess events' in an individual. For example, an individual who 'died' earlier than expected by the model will have a

positive residual. An individual who lived too long will have a negative martingale residual. As many authors note
(e.g., Therneau and Grambsch, 2000; Klein and Moeschberger, 1997), the martingale residual is highly positively
skewed. Thus, the deviance residual is used in its place. The deviance residual is considered a normalizing trans-

formation because a one-term Taylor series expansion shows that it divides the martingale residual by the square

root of'expected number of events' (Therneau and Grambsch, 2000, p. 83). Deviance residuals scattered about
zero in a plot indicate a good fit of the model (S-PLUS 2001, p. 355). As with similarly defined deviance residuals

for generalized linear models, we might consider residuals exceeding about three in magnitude to belong to poorly
predicted individuals. However, this criterion is arbitrary, as there is no reference distribution for deviance residuals
(Tberneau and Grambsch, 2000).

The left panel of Figure 14 shows a plot of deviance residuals by observation for Model 5. The observations are
ordered by recorded DCS time. Observed DCS cases are marked with an 'o', and censored cases are marked with an
'x'. A solid horizontal line is at zero. All of the residuals with magnitude greater than three are observed DCS cases,
but there are not many. The right panel of Figure 14 shows the same residuals plotted by value of the linear pre-

dictor, x_fl for Model 5. (The sloping pattern seen in the residuals is a consequence of the way deviance residuals

are computed). Again, censored and uncensored cases are marked with 'x's and 'o's, respectively. A LOWESS

curve with 25% span is fit to all the residuals. If the residuals were truly scattered about zero, the smooth curve
would show no trend. There is a slight trend downward. The pattern of the residuals indicates that some low-to-
moderate-risk individuals (those who have a linear predictor between about-2 and 0) may be getting DCS too early

as compared to that predicted by the model.

Several authors have commented on the limited usefulness of deviance residuals (Therneau and Grambsch,

2000; Nardi and Schemper, 1999). Deviance residuals have no reference sampling distribution, and a normal
approximation has been shown to not be a satisfactory approximation (Nardi and Schemper, 1999). Nardi and

Schemper derive new residuals called normal deviate residuals that have a standard normal distribution conditional
on the survival function being known. Normal deviate residuals are designed to detect outlying cases, which means
individuals who "died too early' or 'lived far too long' as compared to that predicted by the fitted Cox model.
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Figure 14: Deviance residuals for Model 5 plotted against (left) observation and (right) linear predictor,

The x's represent censored observations and the o's represent observed DCS cases.
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NardiandSchemper(1999)regardpredictionofsurvivalbytheCoxmodeltobeperfectforanindividualif that
individual'sobservedsurvivaltimeandestimatedmediansurvivaltimeagree.Tocomparetheobservedsurvival
timewiththeestimatedmediansurvivaltime,NardiandSchempercomparetheestimatedsurvivalprobabilityatthe
eventtimewith0.5.Treatingthesurvivalprobabilityforindividuali, at time Ti, S i (Ti), as a success probability for

a binomial model, they consider a probit transformation of S i (Ti), N i = _-i {Si(T/)}, for a residual, called a

normal deviate residual (because tI_(x) is the cumulative distribution function (CDF) ofthe standard normal

distribution). Departures from perfect pre diction result in a larger magnitude of the normal deviate residual. With

no censored observations, assuming S i (.) known, the sampling distribution for the normal deviate residual is the

standard normal. When S i (.) is replaced with an estimator (Nardi and Schemper use the Nelson-Aalen estimator for

the baseline cumula tive hazard), the resulting residual converges in probability to its estimand. For an uncensored

observation, i, with the observed event at time ti, the normal deviate residual is

n i = _-' {,_i( ti )} (5.2)

Residuals for censored observations are computed using the fact that the true survival time T_is greater than the

observed censored one tc and, therefore, that the distribution of S i (T/) will be uniform within [0, S,(t/c)]. The

normal deviate residual for a censored observation is then the estimated conditional expected value of (5.2) given

that N i < t_ -l {,_i (t c )}. Thus, the normal deviate residual for a censored observation is

e exp(_0.5(n c )2 ) (5.3)

where nc = _-' {S, (tic)} (Nardi and Schemper, 1999, Appendix A).

Nardi and Schemper (1999) use simulations to show the empirical distribution of the normal deviate residual

approximates a standard normal much better than does a deviance residual. Thus, we could use standard normal
percentage points as cutoffs for declaring an observation as outlying. However, because of the averaging process
used to get the censored residuals, the empirical distribution is more concentrated than the theoretical normal dis-

tribution. Thus, for each censored residual, Nardi and Schemper compute the probability that, if uncensored, the
residual would surpass the negative cutoffpoint (i.e., the observation would have lived too long). They show that

this probability is _ = min[1.0, a/,_ i (tc)], where Or is the 'cutoff' percent of the largest residuals in the negative

direction. Thus, a censored individual with a cumulative survival probability less than Or is definitely outlying.

They recommend a threshold of 0.3 for P/.

We computed normal deviate residuals for Model 5 and plotted them in Figure 15. The right panel shows the

normal deviate residuals against the linear predictor. As with Figure 14, observed DCS cases are marked with
an 'o' and censored cases are marked with an 'x'. Dotted horizontal lines denote the +1.96 cutoffpoints from the

theoretical normal distribution assuming Or = 0.05. A solid horizontal line marks the zero point. All but two of the

residuals exceeding the cutoff belong to uncensored observations. These observations experienced DCS too early, as
compared to their estimated risk score based on the linear predictor. Two censored cases are outlying in the negative

direction (both at-2.37). The P/ values for these two cases were 1.0. No other censored cases had Pi values greater

than 0.3. The records for the two cases are shown below.

DCS censor P2 EXER TR360 PN2360

1302 8 0 4.4 1 2.28179 10.0399

1303 8 0 4.4 1 2.28179 10.0399

According to their covariate values, the high TR360 and EXER value of one puts both observations at high risk, yet
they were censored at eight hours. Thus, they 'survived' already for too long.
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Figure 15: Normal deviate residuals for Model 5 plotted against (left) observation and (right) linear

predictor. The x's represent censored observations and the o's represent observed DCS cases.

According to Figures 14 and 15, there are some observations that are poorly fit by Model 5. They tend to be

uncensored cases that experienced DCS sooner than expected.

5. 5.2. Global Goodness-of-Fit Using Martingale Residuals

A formal test of overall goodness-of-fit of the Cox model was proposed by Parzen and Lipsitz (1999) and
independently by May and Hosmer (1998). The test compares observed and (model-based) expected numbers of

events within covariate risk groups and computes a chi-square test. The test is similar to the Schoenfeld (1980) test,

but suggests a partition of the covariate risk space that is more automatic. The covariate regions are defined by pre-

= exp(xifl), where fl is the MPLE from the fit of a Cox model. The cut-points of, say, G re-dicted risk scores, 0)i ' ^

gions are defined by percentiles of the 0)i values, called percentiles of risk, such that each category ideally contains

roughly the same number of observations. Each observation is classified into one of these G categories depending on

its risk score, and (G -1) dummy variables are introduced into the Cox model. The score test of the resulting set of

(G -1) coefficients constitutes a significance test for overall fit of the Cox model. Sample size guidelines given by

Parzen and Lipsitz follow those for general chi-square tests: In order for the score test to reliably have an approxi-
mate chi-square distribution, at least 80% of the categories must have estimated expected count of at least five and

all estimated expected counts should exceed one. Expected counts were estimated using the estimated martingale
residuals (at infinity) from the Cox model fit. The sum of the observed number of events minus the sum of the

estimated martingale residuals within each category give the estimated expected count for that category

(Parzen and Lipsitz, 1999; or May and Hosmer, 1998).

We performed this test for Model 5. We partitioned the risk scores into seven categories, as defined by break points

given in Table 5, giving the indicated expected counts. The categories were chosen to achieve the expected sample
size rules given by Parzen and Lipsitz (1999). To do this, we first calculated the septiles of the risk scores. Then, to

get an expected count exceeding 1.0 in the first category, we raised the first category's upper cutpoint. Thus, not all

categories have the same number of observations. The value of the score test was 7.80 with p = 0.253 (df = 6). Thus,
we do not reject the hypothesis of model fit, at a significance level of 0.05. Furthermore, all other groupings we tried
also did not reject the hypothesis of model fit at a significance level of 0.05. A comparison of the observed and

expected events by risk group appears in Table 5. The two risk groups [1.370, 2.320) and [2.320, 10.284),
th th

representing roughly the 5 and 6 septile groups, are the worst predicted. Thus, although the model fits

significantly well, there is room for improvement, particularly in the high risk area.

24



Table 5: Observed Failures and Expected Failures for Model 5

Ris k group

[0.00, 0. ! 70)

[0.170, 0.518)

[0.518, 1.042)

[1.042, 1.370)

[ 1.370, 2.320)

[2.320, 10.284)

[10.284, 30)

*Includes censored t_mes.

Number of Obns Observed Expected

in Region* Failures Failures

263 2 1.23

120 10 8.90

193 13 i 3.09

183 18 16.02

187 29 38.48

273 60 52.50

102 35 36.78

Parzen and Lipsitz (1999) mention in passing that their test can be used as a formal test for PH by using time

intervals as well as risk groups to divide the observations. However, in our experience this version of the test was

very difficult to use correctly if we obeyed the sample size recommendations because it involved arbitrary decisions
about the partitioning of the time-by-covariate space.

5.5.3. Assessment of Influential Observations

In general, for an observation to be influential on the fit of a model, it must be far from the mean of the covariates

(high leverage) and have a large residual (Wilcox, 2001). In a Cox model, the residual is the martingale residual in
(5.1), and the mean of the covariates changes over time as individuals leave the risk set (Hosmer and Lemeshow,

1998). Thus, leverage must be determined from a weighted average of the distances of the covariate values to the
risk set means, where the risk set means are defined in (4.1). The so-called score residuals are these weighted av-

erages that are defined for each observation for each covariate in the model (for further details, see Hosmer and
Lemeshow, 1998; or Collett, 1994). To obtain a measure of influence of an observation on an MPLE of a coeffi-

cient, we scaled the score residuals by an estimate of the variance of the coefficient estimates. The resulting scaled
residual, which is called the scaled score residual (or dfbeta residual), is used as a measure of influence (Therneau
and Grambsch, 2000). The scaled score residual for the kth covariate and ith observation approximates the change in
the kth coefficient estimate if the ith observation were removed from the data set and the model reestimated without

that observation (see Themeau and Grambsch, 2000, for more details).

Figure 16 shows dfbeta residuals for Model 5. For each covariate, we have plotted the observation (in order of

recorded DCS time) by the approximate scaled change in the coefficient after removing the observation from the
model. This is the dfbeta residual divided by an estimate of the standard error of the coefficient. If the removal of
an observation causes the coefficient to increase, the dfbeta residual is negative and vice versa. Figure i 6 shows that

although the influence values are much higher for some observations than others (mostly corresponding to uncen-
sored cases), none of the observations exerts a change greater than about 30% of a standard error. For the covariate
with the largest standard error (EXER), no observation exerts a change greater than about 20% of a standard error

(about 0.20 in magnitude). Interestingly, the same two observations that had 'large' normal deviate residuals also

had the highest influence magnitudes (-0.325) on the coefficient for TR360 × EXER. These individuals may be
considered unexpected 'long-term survivors.' Long-term survivors tend to have a large effect on the MPLEs of

regression coefficients in a Cox model (Valsecehi et al., !996).

If the presence of influential points causes concern, we may obtain robust estimators of the coefficients using

a weighted partial likelihood. Schemper (1992) and Valsecchi et al. (1996) present weighted partial likelihood es-
timates where weights are used on the contribution of each event time to the log likelihood. Valsecchi et al. used a
weighted partial maximum likelihood estimation to get estimates of the coefficients that limit the influence of long-

term survivors, whereas Schemper used it in the presence ofnon-PH for one or more covariates. Both authors use
similarly defined weights based on the Kaplan-Meier survival estimate, but Valsecchi's development is specific to
stratified Cox models. We followed Valsecchi's method for DCS data, and used weights at each event time equal to
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the Kaplan-Meier estimate of survival within each P2 stratum (giving more weight to early failures in the stratum).

The resulting coefficient estimates and approximate standard errors in Table 6 (Model 6) show that the coefficient

estimates are similar except for the coefficient describing the relative effect of D.P2, which is now negative rather

than positive. Thus, the quadratic effect of P2 is of the same shape but is not as pronounced for P2 values less than

the mean (6.20), as it was in Model 5. As P2 passes its mean of 6.20 psia, the linear effect on the log hazard is

positive for Model 6, whereas for Model 5 this linear effect was negative.
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Figure 16: Influence for the covariates in Model 5, by observation.
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Table 6: Weighted Partial Maximum Likelihood Estimates
for Stratified Cox Model

Model6

(stratified on P2)

-2 Log LH
AIC

Parameter Estimates

1447.38

1457.38

fit (TR360)

f12 (P2-P2)

/]3 (P2-P2)2

/]4 (EXER)

/]5 (TR360:EXER)

2.287 (0.409}

-0.353 (0.124)

-0.343 (0.081)

-1.916 (1.088)

1.434 (0.577)

To assess the effect of the weighting on influence, in Figure 17 we show the dfbeta residuals for Model 6. For
each covariate, we have plotted the observation by the approximate scaled change in the coefficient after removing
the observation from the model. Weighting appears to have removed much of the influence of the early observa-

tions. However, some later observations now have dfbeta values greater than 30% of a standard error for P2,
which corresponds to a change of only about 0.05 in the negative direction. One of these values corresponds

to the only event in the fourth stratum of P2 values that is greater than 7.8.

Unfortunately, although the weighted model appears to fit well and removes some of the high influence values, it
is unclear how to estimate survival with a weighted model for a given set ofcovariates. One option is to modify the

weighted cumulative hazard function for known case weights given in Therneau (1999, p. 35). if we start with Bres-
low's estimate in (4.4), this means that we estimate the weighted cumulative hazard function within stratum k as

we di,

/_0, (t Ix(,)) = Z W(ti ' ,_)
t,k -<t

(5.4)

where w/, is the appropriate weight at the ikth event time, and W(tq ;_): Z)_ % ) exp(xr _)" Note that the

denominator does not involve the weights. This is an important distinction between a weighted likelihood and a

Cox model with known case weights (Therneau, 1999). One complication with using (5.4) is that the computation of
standard errors must involve the variance of the weights as they are estimated. Thus, we leave this topic for a later

paper.

If we naively substitute the parameter estimates from Model 5 with the parameter estimates for Model 6 and then
compute estimated survival as in previous sections, we get the survival estimates in Figures 18 and 19, which could

be compared to Figures 12 and 13, respectively. Notice that the survival probabilities are predicted to be greater for
6.0 < P2 < 7.8 than for P2 < 4.3 at most hours, which is the opposite order to that seen in Figures 12 and 13. How-
ever, the confidence intervals cannot be computed so readily for this type of prediction from a weighted model.
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6. Interpretation of the Stratified Cox Model

As we mentioned in Section 2, the exponents of the MPLEs in the Cox model with covariates are estimates of
the relative risk of each covariate as compared to a baseline. For a stratified model, these estimates apply to all

strata. Model 5 (Table 4) says that for exercisers, for each one-unit increase in TR360, when P2 is held constant
within a stratum, the hazard increases over 73-fold. For non-exercisers, the DCS risk increases only over 13-fold for
each one-unit increase in TR360. The modeled effect of P2 is always nonpositive but quadratic. Without considering

stratification, estimates say that as P2 rises to its mean of 6.20, with TR360 kept constant, the effect on the hazard of

DCS symptoms increases. As P2 increases beyond its mean, the effect on the hazard decreases. But within a stratum,
the values of P2 are limited to those values the stratum represents. Note that for TR360 to be 'kept constant' while

P2 varies, PN2360, the partial pressure of nitrogen must vary, too, because TR360 is a ratio of PN2360 to P2.

The modeled quadratic effect of P2 contrasts with the linear effect of P2 found by Chhikara et al. (I 998). To check
the authenticity of the quadratic effect on hazard, we used the methodology of Gray (1996) to compute a nonpam-

metric estimate of the hazard based on covariates. Briefly, in Gray's method, the data are binned based on covariate
groups (by specified quantiles) and time intervals, and a smoothed (LOWESS) estimate of the hazard is formed.
Gray's method is implemented in the S-PLUS function hazcov. Figure 20 gives the hazard by time and P2. At any

time point as P2 increases, the hazard rate appears quadratic, although not necessarily in the same way as the Cox
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model estimates indicated. However, the Cox model estimates are independent of time and only describe an effect

on a baseline hazard that changes over time.

Figure 20: Hazard estimate by time and P2
(using Gray's hazcov function).

To get estimates of absolute risk instead of relative risk, we can use the estimated cumulative or integrated hazard
function. But, this is just minus the log of the expected survival that was computed in Figures 12 and 13.

7. Discussion On the Use of Frailty Models for DCS Data

It is clear that a model stratified on quartiles of P2 suffers some lack of fit. In Section 5.5, we showed that some

individuals are not fit well by the model, and some risk groups are not as well-described as others. There may also
be unmeasured prognostic factors. These situations suggest that the addition of subject-specific frailty terms into the

partial likelihood may help the fit of the stratified Cox model. A frailty is an unobserved continuous random variable
that describes excess risk or 'frailty' for distinct groups, such as families or even single individuals, in addition to
that described by measured covariates (Therneau et al., 2000). Thus, frailties are like unobserved covariates.

Individuals with greater frailty are expected to experience the event earlier than those with lower frailties.

A Cox model with subject-specific frailties is a special case of a shared frailty model (Hougaard, 2000). The term

shared comes from the use of such models to account for dependence among certain observations. In our case, we
would have a single frailty per record. Thus, it is more appropriate to consider frailties as picking up excess variation

not modeled by measured covariates. As the covariates are the same for each group of tested individuals instead of
being unique to an individual, there may be some subject-specific variability in DCS times that is not already
modeled.

In a frailty model, the hazard conditional on the frailty is

,_(t; X,/_) = _,0(t)/_ exp(Xfl) (5.5)

where _ is a positive random variable called a frailty, and is usually rewritten in the form /_ = exp(09) so that

(5.5) becomes, in vector notation,
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A(t;X,_) = 2o(t)exp(X fl + Zto) (5.6)

with Z a vector of indicators that selects the appropriate (9 term for each subject. For many frailty distributions,

proportional hazards are only assumed in the conditional hazard. The marginal hazard formulation resulting from
integrating the associated survival distribution of (5.6) with respect to the frailty distribution does not usually reflect

proportional hazards (Hougaard, 2000).

Using frailties in Cox models is quite common. In fact, it is believed by some (Hougaard, 1995) that all models
should contain frailties. Henderson and Oman (1999) show that when frailty is present but ignored in a Cox model,

the regression coefficients are biased towards zero. However, when censoring is present, the bias is reduced. In our
data set, we have over 85% right-censoring. Thus, it is of interest to see if fitting frailties makes any difference in the

coefficients. The addition of frailties to the Cox model is very similar to the addition of random effects. Previous
work on the use of random effects in DCS research comes from Thompson et al. (2002) and Thompson and

Chhikara (2001).

To use frailties in our model, we must specify a distribution for the frailties; that is, the distribution from which
the frailties are assumed a random sample. There are many conventional choices for the frailty distribution in the

literature. Hougaard (1995) reviews many of these choices. We considered only two choices: a gamma distribution

and a Iognormal distribution. Both of these frailty distributions allow us to estimate parameters by maximizing a
penalized partial log likelihood with penalty function equal to the log likelihood for a random sample of (9's from

the appropriate distribution (Therneau and Grambsch, 2000). This is conveniently implemented in the S-PLUS func-

tion coxph.penal. The parameters to be estimated are the coefficients in the ordinary Cox partial likelihood, plus any
unknown parameters in the frailty distribution. The frailties themselves can also be estimated, if desired.

We fit several frailty models to the DCS data. We included stratification so that the conditional hazard function
in (5.6) has a different baseline hazard per stratum. We fit two different frailty distributions, the gamma and

lognormal, but we only give results for the gamma distribution, as the conclusions were similar between the two
distributions. The gamma distribution allows a greater chance for some frailties to be near zero than does the

lognormal distribution (Therneau and Grambsch, 2000). Because _ = exp(tO) is distributed gamma, (9 is

distributed as log-gamma. It is the distribution of the log of d0" that is used in the penalty function. For purposes

of identification, the mean of _ is fixed at one. This leaves one unknown parameter--say, 0--to describe the

variance of (9. The variance term can be estimated along with the ordinary Cox model parameters.

Table 7 gives results from the addition of frailty terms to Model 5. Estimates of the exponents of the coefficients fl

are the relative risks for any given subject. The log likelihood given for the gamma frailty model is the log partial

unpenalized likelihood integrated with respect to the frailty distribution. A likelihood ratio test (LRT) that the frailty
variance exceeds zero is given by twice the difference between this integrated log likelihood and the log likelihood
of a model without frailties (Model 5). This statistic has an approximate chi-squared distribution with one degree of

freedom (Therneau and Grambsch, 2000).

Estimation of the frailty variance 0 is done in an outer loop ofa Newton-Raphson algorithm for estimating fl and

tO. Assuming a fixed 0, _J and (b are found by a Newton-Raphson algorithm. Then, 0 is found by maximizing

the profile likelihood with fl and (9 profiled out, and fl and O) are then re-estimated. Full details of the estima-

tion procedures can be found in Therneau and Grambsch (2000) and Therneau et al. (2000).
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Table 7: Partial Maximum Likelihood Estimates for
Stratified Cox Model with Frailties

Model 7

(Gamma frailty)

-2 Integrated LogLH

LRT of frailty
variance

Parameter Estimates

1732.00

0.10 (df = l)

,81 (TR360)

/_2 (P2-P2)

,83 (P2-P2)2

J_4 (EXER)

_}5 (TR360:EXER)

0 Frailty Variance

2.629 (0.526)

0.149 (0.350)

--0.324 (0.108)

-2.548 (1.049)

1.781 (0.557)

0.164(0,2.11)

Table 7 gives estimates that are very similar to those from Model 5. The standard errors for the coefficient esti-
mates in Table 7 come from the inverse of the second derivative matrix of the penalized log likelihood. Because

these estimates are computed assuming that the parameter 0 is fixed, they are underestimated. The standard errors

can be corrected using the bootstrap procedure. The bootstrap procedure would have to be appropriate for censoring

and for stratification (Davison and Hinkley, 1997). In addition, the standard error for 0 is not provided from stand-

ard statistical software. The bootstrap again can be used to obtain it instead. However, one suggestion by Themeau

and Grambsch (2000) for the gamma frailty model is to compute a confidence interval for 0 using the profile like-

lihood. The profile likelihood confidence interval finds all values of 0 for which the LRT statistic (using the unpen-

alized likelihood) exceeds 3.84, the chi-squared 95 th percentile for one degree of freedom. The interval is not usually

symmetric about the point estimate. A profile likelihood-based confidence interval for 0 is (0, 2.11).

Based on the LRT and the confidence interval, we conclude that the estimated frailty variance does not significantly
differ from zero. Thus, we can probably conclude that the measured covariates account for most of the variance in
DCS times. Also, the coefficient estimates in Table 7 are very close to those in Table 5. It is interesting to note that

for models that exclude certain terms, however, the frailty variance significantly differs from zero, implying that
those terms are needed in the model. For example, if we use subject-specific frailty terms in the initial Cox model
with three covariates and no interaction (Model 1 ), we get a highly significant frailty variance. The LRT statistic is

29.3 on df = 1, giving a p-value less than 0.001. Including the interaction between TR360 and EXER gives an LRT
statistic of 4.08, giving a p-value of 0.04. The model fit by Chhikara et al. (1998) included the covariates EXER, P2,
and PN2360. With gamma frailties added to this model, the frailty variance is estimated at 1.48, and the LRT is 5.92

giving a p-value of 0.02. As one major role of frailties is to pick up an excess variation that is not already modeled
by terms in the model, we can conclude that previously considered models are likely inadequate for the DCS data.

8. Model Validation

In this section, we discuss model validation including predictive accuracy and calibration of predictions of a model
applied to a future data set. We apply recently proposed measures of validation in the literature to the Cox model
stratified on P2 quartiles, as well as to the other models, to compare them. In previous sections, we used AIC to

compare the fit of various Cox models. AIC may be considered a measure of relative fit of a model to the existing
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data.Herewecomparethe fit of several models in terms of how well they are expected to predict or explain survival
on a future data set that is similar to the existing data set.

8.1. Predictive Accuracy of Cox Models

The predictive accuracy or predictive value of a statistical model measures its fit to future data that are similar to
the data that were used to fit the original model, lfa validation data set is available, the fitted model can be applied

to this data set, and discrepancies in the predictions calculated, to obtain a measure of predictive value of the model.

Ifa validation data set is not available, leave-one-out cross validation is an option for obtaining a measure of

predictive value.

Verweij and Van Houwelingen (1993) describe a measure of predictive value from the fit of a Cox proportional

hazards model. Predictions from the Cox model are made using the prognostic index (P/) x'_. First, a PI is ob-

p ^

tained for each individual i, based on a model without that observation, XiJ_(_il . Then a Cox regression is performed

on the complete data set with X[_ I_il as the only covariate. The partial log likelihood from this model is denoted by

l'(c), where c is the regression coefficient for the PI. If l(c) denotes the partial log likelihood from the fit of the

original data to the PI X'i_, then c = 1 maximizes l(c). Thus, 1(1) is considered a measure of fit to the data from

which the model was derived. Similarly, 1°(1) measures the fit to future data. Thus, l°(1) is a measure of the pre-

dictive value of the model. In addition, Verwe ij and Van Houwelingen note that the coefficient estimate t3 that

maximizes f(c) is a shrinkage factor that can be used to estimate the amount by which regression coefficients are

overestimated or exaggerated in the original Cox regression. A value of t_ close to 1.0 implies little overestimation.

Applying this shrinkage factor to the linear combinations, x/_ will give adjusted survival estimates. In this way,

predictions can be improved by shrinkage.

The values of 1"(1) and c for Models 2 through 5 are given in Table 8. Standard errors for c are given in

parentheses. Recall that Models 4 and 5 are stratified on EXER and P2, respectively. The stratification was also

included in the calculation of l ° (1). So, to interpret the values in Table 8 correctly, the future data set would have to

be stratified on these variables as well. Thus, the same reasons for stratifying on EXER and P2 (namely, evidence of

non-PH) must be true of the new data set. Furthermore, the cross-validation did not recompute quartiles of P2 for
each fit because only one observation was left out each time. Thus, the same cut-points for P2 are assumed to

apply to the new data set. This is reasonable because it is assumed that the new data will have similar values
of the covariates as the original data.

Table 8: Predictive Accuracy of Models

Model 2 Model 3 Model 4 Model 5

-- 1044.542 -- 1037.02 -- 964.42 --872.34

0.956 (0.06) 0.952 (0.07) 0.934 10.07) 0.918 (0.09)

According to Table 8, Model 5 has the highest measure of predictive value but the lowest shrinkage factor.
However, the standard errors on the shrinkage factors are large enough to indicate that any 'true' difference among

them is very slight. The order in the t_ estimates reflects model complexity. The most complex model is Model 5

because it has four strata and five coefficients, and the least complex model is Model 2 because it has four coeffi-
cients. The most complex model requires the greatest amount of shrinkage when applied to a future data set. We

use the shrinkage factors next to calibrate the model predictions.
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8.2. Model Calibration of Survival Predictions

To calibrate survival predictions, we again use the methodology of Verweij and Van Houwelingen (1993).

Verweij and Van Houwelingen improve individual survival predictions from a Cox model by adjusting the PI

by the shrinkage factor, c, above. Verweij and Van Houwelingen's adjusted prognostic index (AP1) is then

API = Xfl + _(X - X)_ (5.7)

Note that when 0 < c < 1, (5.7) is pulled toward the mean estimate .J_i_, and whenc = 1, (1.17) equals the

ordinary PI. Estimated expected survival curves that use the API in place of the PI are corrected for overestimation

caused by overfitting because they are pulled in closer to the survival estimate evaluated at the mean covariate
vector.

To correct for overfitting in the survival curves in Section 5.4, we use the API in (5.7) computed using the MPLEs
from Model 5 in Table 4. This leads to the adjusted prediction model

S(t Ix) = SO(t) exo(AP') (5.8)

where SO(t) is estimated using the Flemington-Harrington estimator mentioned in Section 5.4. It should be noted

that the shrinkage factor is an estimate with an associated uncertainty. Thus, we can still expect some deviation if we

were to apply this model to a new data set. Any confidence interval on (5.8) must account for the uncertainty in c.

Figures 21 and 22 are the analogues of Figures 12 and 13, with the API substituted for the PI. As expected, the
differences among the curves for each level of P2 are less pronounced than they are in Figures 12 and 13. For both
TR360 values, the estimated expected survival prior to about 1.5 hours is roughly the same no matter the level of P2.

After !.5 hours, for P2 between 6.0 and 7.8 psia, the estimated survival probability decreases more rapidly, but the

probabilities for P2 < 4.3 and 6.0 < P2 < 7.8 remain roughly equal because the curve for P2 < 4.3 was pulled
closer to that of 6.0 < P2 < 7.8, which covers the mean P2.
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Figure 21: Expected survival for hypothetical individuals who exercised at altitude
with (left) TR360 -- 1.60 and (right) TR360 = 1.75.
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9. Concluding Remarks

A Cox model stratified on quartiles of the final ambient pressure at altitude (P2) appears to fit the data adequately.

However, some improvement may be made by a weighting procedure (Model 6). Since the addition of frailties did

not appear to improve fit and the estimated frailty variance was not significantly greater than zero, we do not believe
random effects are necessary to account for unmodeled covariates or there is substantial variability in the frailties of

the subjects. However, this may be due to the nature of the data collection and not to any indication that DCS is not
a highly personal occurrence. Subjects were tested in groups, and measured explanatory variables were applied to

the whole group of individuals (although many groups were fairly small with two or three individuals). Had the
grouping information been available, a shared frailty model could have accounted for some of the variability

among groups of tested individuals.

A measure of predictive accuracy indicates that Model 5 has better predictive ability than the other models we
^

considered. However, shrinkage of the prognostic index X'fl is expected to be higher for Model 5 due to its being

the most complex of the models. Predicted survival curves using adjusted prognostic indices show a dampening of
the effects of covariates on survival.

We have tried to adequately model DCS occurrence, but there still remains quite a bit of room for improvement.
Various assessments of the proportion of explained variation in the data accounted for by the fitted Cox model (e.g.,

Schemper, 1990, 1992; Harrell, 1998) show that only about 25-40% of the variation is accounted for by any of the
models we consider, and this is only on the data set at hand, not on future data sets.

Although the Cox model is very popular for survival data, it is not the only flexible model available. The Cox
model with time -fixed covariates assumes a multiplicative effect ofcovariates on the baseline hazard (except if

covariates enter through stratification). Alternatively, Aalen's (1980) additive hazard model models the hazard as
an additive combination of covariate terms, where the coefficients in the linear combination may dependent on time,

allowing the covariate effects to vary over time. Thus, covariates have an additive effect on the baseline hazard. This
model measures additional excess risk due to the effects ofa covariate in absolute terms instead of relative terms

(Klein and Moeschberger, 1997).

In addition, frailty distributions can be nonparametric instead of having a form that is dependent on only a few
parameters (Ibrahim et al., 2001 ). To achieve flexibility along with structure, we can use a scale mixture of Gaussian
distributions for the distribution of gO. This type of distribution might be used to check for outlying frailties as

observations with particularly low scale estimates (Wakefield et al., 1994).
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Appendix - Arjas Plots

Arjas plots (Arias, 1988) can be used to graphically check the PH assumption for a given fitted Cox model, for each
covariate in the model.

To check the PH assumption for a given covariate, say Xg, first, we fit a Cox model using all covariates except the

gth. Let _ be the MPLE from this fit. We then group the values of Xg into K categories and, for each failure time,

ti_ , in the kth category, we compute the expected cumulative number of failures in the kth category at that time as

E k (t,,)= Z/2/0 (min(ti, ,Tj, )lxj, )exp(x_, _) (5.9)
J_

where

/40 (min(tq, Tj, )l xj_ ) is the estimated cumulative baseline hazard in (4.4)

Tjk is the recorded failure time for the jth subject in the kth category

and xjk includes all covariates exceptX_ for thejth subject in the kth category

The observed cumulative number of failures that have occurred in the kth category up to time ti_ is

where _Jk

Nk(ti,)=Z6j, I(Tj_ <t_ )
Jk

= 1 if thejth subject in the kth category has an uncensored recorded time, and is zero otherwise.

(5.10)

To create the Arjas plot, we plot E k (t,,) by Nk(tik ) to compare observed and expected cumulative failures at

time ti, for the kth category. Klein and Moeschberger (1997) give some guidelines for its interpretation. If the co-

variate does not belong in the model, then Nk(tik ) - E k (ti,) is a zero-mean martingale, and a plot of Nk(ti_ ) by

E k (tq) should be close to a 45-degree line through the origin, lfthe covariate belongs in the model and the correct

model for the hazard is h(tlXg = k, X*) = ho(l)exp(_k)exp(flrx*), then the Arjas plot will give graphs for

each category that are approximately linear, but with slopes differing from one. If the omitted covariate Xg has
a non-PH effect on the hazard rate, then the graphs will differ nonlinearly from the 45-degree line.
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